skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Zhenong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The reciprocity between thermal emission and absorption in materials that satisfy the Lorentz reciprocity places a fundamental constraint on photonic energy conversion and thermal management. For approaching the ultimate thermodynamic limits in various photonic energy conversions and achieving nonreciprocal radiative thermal management, broadband nonreciprocal thermal emission is desired. However, existing designs of nonreciprocal emitters are narrowband. Here, we introduce a gradient epsilon-near-zero magneto-optical metamaterial for achieving broadband nonreciprocal thermal emission. We start by analyzing the nonreciprocal thermal emission and absorption in a thin layer of epsilon-near-zero magneto-optical material atop a substrate. We use temporal coupled-mode theory to elucidate the mechanism of nonreciprocal emission in the thin-film emitter. We then introduce a general approach for achieving broadband nonreciprocal emission by using a gradient epsilon-near-zero magnetooptical metamaterial. We numerically demonstrate broadband nonreciprocal emission in gradient-doped semiconductor multilayer, as well as in a magnetic Weyl semimetal multilayer with gradient chemical potential. Our approach for achieving broadband nonreciprocal emitters is useful for developing broadband nonreciprocal devices for energy conversion and thermal management. 
    more » « less